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ON COMPLICATED YODELS OF CONTINUOUS lvlEDIA 
IN THE GENERAL THEORY OF RELATIVITY* 

A.G. TSYPKIN 

Let zi be the coordinates in four-dimensional Riemann space, in which the components of 

In the context of the general theory of relativity, the system of Euler's 
equations is obtained from the variational equation under the assumption 
that the Lagrangian of the material depends on supplementary (as compared 
with classical theories) thermodynamic parameters, and when possible 
irreversible processes are taken into account. It is shown that, for a 
thermodynamically closed system I the equations of momenta for a continuous 
medium are a consequence of the field equations. The form of the energy- 
momentum tensor of the material is considered when the arguments include 
the Lagrangian of the derivatives of the supplementary thermodynamic 
parameters. 

the metric tensor g,j, the coefficients of parallel transfer rflxr and the curvature tensor 
&$ are connected by the equations 

Rij = R,;b, R = Rtjgg’j 

where Rtfare the components of the Ricci tensor ) and R is the scalar curvature of the space 
(the Ricci scalar). Throughout, the small Latin indices cover the values 1, 2, 3, 4; 
summation is performed with respect to repeated sub- and super-scripts; the signature of the 
metric is (+ - - -). 

Together with the variables s'in the Riemann space we consider for a solution the 
accompanying coordinates Ek, i n which fixed values E1.E2,gS individualize a point of the 
continuous medium; we assume that there is a one-to-one correspondence 
variables,z* and Sk, 

.zi = CC'@") between the 
which is the law of motion of the continuum of the continuous medium. 

*Prikl.Matem.Mekhan.,51,6,908-915,1987 
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In the contex of the general theory of relativity, the dynamic equations for the field 
and continuous medium can be obtained by means of the variational equation /l/ 

6 s ndV,+6w*+SW=O 
V‘ 

dli, = T/~rkz’d~~d~~d~~, g = det 11 gij Ii 

where dV4 is the invariant element of a four-dimensional volume Vq, bounded by the three- 

dimensional surface X8, and the Lagrangian A, which is a four-dimensional scalar, is a function 
of the following arguments: 

where the functions pA can be either scalars or the components of vectors or tensors of any 
rank with any structure of the indices , dependent on the coordinates sk. Here, for simplicity, 
we do not include among the arguments covariant derivatives of higher than the first order of 
the arguments pA,or covariant derivatives of arguments 5'. Given suitable modifications of 
the expressions, all our deductions below remain valid for the extended set of arguments. 

As the parameters p4 we can choose the tensor characteristics of the electromagnetic 
field or the kinematic and thermodynamic characteristics of the continuous medium, e.g., the 
deformation tensor, the velocity vector 
covariant derivative in the z' 

, the entropy, or the temperature; V, denotes the 
coordinate system; KAB (Sk), Kc (zk) are the components of 

the parametrically specified vectors or tensors in the accompanying gk coordinate system and 
in the xi coordinate system respectively , which characterize the given properties of the 
material and space. Among the tensors K*s are included e.g., the given physical character- 
istics of the medium (e.g., the components of the tensors which characterize the anisotropic 
properties, the permittivity, or the permeability, etc.). Among the tensors Kc,depending on 
the model employed, are included the material characteristics, which are assumed to be given 
when constructing the model of the continuum and when making hypotheses about the geometry of 
the space. For instance, as the parametrically known functions P(xE) , we can choose the 
characteristics of the unperturbed electromagnetic field given in the statement of the problem, 
or of the given unperturbed gravitational field, when we take the model of a material for 
which the energy depends on the field characteristics. 

In the context of the models considered below, the arguments PA are known functions, as 
are the components of the metric tensor 
2 (Ek). 

gij(x)o and the law of motion of the continuous medium 

Consider the fairly general model in which the Lagrangian h is taken in the form 

A= --R/(2x) _t V,sP + n,,,, x = 8nGlc* (4) 

where x is the gravitational constant, G is the Newtonian gravitational constant, c is the 
velocity of light in vacua; the four-dimensional scalar A, is the material Lagrangian, which 
depends on the set of arguments (3) (here, by "material" we mean a set of continuous media 
and physical fields, excluding the gravitational field); Q' are the components of the four- 
dimensional vector, which is given in the context of the particular model and is a function 
of the coordinates xi only. 

Cur future expressions can be extended to the case when the vector components 51' also 
depend on the set of arguments (3). The physical meaning of 52' was discussed in detail in 
12/. Below, we assume for simplicity that the function Am, which characterizes the thermo- 
dynamic state of the material and depends on the set of arguments (31, does not depend on 
ari*%xd and depends on rjjk only via the argument VkpA. (A similar set of arguments, in 
which p* were regarded as vector components, and instead of rijk 
taken, was used in /3/). 

the argument agj,/&! was 

We shall henceforth consider the simple case of continuous motions and processes, when, 
in general, the non-holonomic functional SW* of the variational equation has the form 

Here, MAare the components of the generalized forces, whose specification is connected 
with the theory of internal dissipative mechanisms in the thermodynamic system used in the 
model, & =zji are the components of the tensor defining the viscous properties of the 
medium, and &PA is the absolute variation of the tensor @components, which, for actual 
motions and processes, is the increment of the tensor p* components with respect to the 
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accompanying coordinate system; Pi: is a combination of Kronecker deltas, whose form can 

be established from the relation 
Vit@=;:ap*/azj+ F$sr;,< 

while the variations 6Lgif are given by the equations 

61$fj -7 8gjj + g,jvf6Xs + ~:(JV$2Yd 

If the thermodynamic system is closed, i.e., there is no force or energy interaction 
with other thermodynamic systems, then, by the second law of thermodynamics for actual 
processes, we have the equation 

The presence in the variational equation of a non--zero non-holonomic functional &w* is 
in general essential when constructing many models of continuous media and fields. Here, the 
set of varied parameters pA in the expression for the functional 6W* may obviously not be 
the same as the set of parameters pA which appear among the arguments of the Lagrangian (3). 
It must also be noted that the dependence of the non-holonomic functional 6W* on the absolute 
variations of the parameters pA is entirely natural, since, in accordance with its physical 
meaning, the parameters p.*describe the thermodynamic state ofthematerial, which does not 
depend on the choice of coordinates zi. In particular, as will be shown below, givenasuitable 
choice of parameters pA and of the generalized mass and surface forcesM,,the functional (5) 
enables account to be taken of the processes of dissipative heat liberation in the continuous 
medium, due to its electrically conducting properties. 

Using the expressions for the variations, /4, 5/, the first term of the variational Eq. 
(2) can be written as 

Here, taR are the components of the unit outward normal vector to the three-dimensional 
surface ea, and dOa is the three-dimensional invariant element of the surface x1. 

From the condition forthevolume integral in variational Eq.f2) to vanish, using (5) and 
(6) with linearly independent variations $glr,6sS, and +A, we obtain the following system 
of Euler equations for the functions gfj (x*), z' (Ek), @(x&f: 

(9) 
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In Eqs.f7), T"" are the components of the symmetric tensor given by 

Eqs.(7) define the metric tensor of four-dimensional Riemann space; (8) are the four- 
dimensional equations of momenta for the material; (9) can be regarded as the equations of 
state, among which, in particular, given a suitable choice of the parameters @,are the 
equations of moments for the material. 

It must be said that the equations of momenta (8) are obtained under certain special 
conditions on the form of the variations of the parametrically specified tensors K*B(E9, 
Kc (2% namely: since, in accordance with our above assumption, the tensors IL@) are regarded 
as given, the total variations of the components of these tensors are zero 

&Y**=o 
fW 

and the partial variations aKAB are given by 

G?K-~ r-8+C-B 

for actual motions, the equation bKAB=O in the accompanying Ek coordinate system is the 
condition that the components of the tensor K-s be constant for an individual point of 
the continuous medium: dK+Blds= 0, which does not exclude possible spatial inhomogeneity of 
the medium, characterized by the tensor K(%k). 

From Eqs.(lO) we have the expressions for the total variations of the tensor K components 
in the xi coordinate system: 

&= F$KAVkbz’ 

while for the partial variations of the tensor hx components we have 

dhx = - br’V,ti+ F$ICAVkbr' 

It can be shown that the equations of momenta (8) retain their form when the arguments 
include only the parametrically specified tensors with components with respect to the 
accompanying coordinate system Ir'^B 

( II&ill 
(%') = %A~ KA(xk), where LB are products of the type %j' %Ln... 

is the inverse of the matrix llr,'l!). We only need to take account of the difference 
in the dependence of the function A, on the argument r,(. 

From the condition for the surface integral in variational Eq.(2) to vanish we obtain 

SW =: 5 (P;fSx+ + T”jagij -+- Tk"jVJ?g~j + hf~‘8/.4~) nk do, 
rr 

where the quantities pi.‘k, Tkij, Tksij, 
IWA~ are given by equations which can be found from (5) 

and (6). In particular, given any variations 6~' and SCL_" on the surface X,, it follows 
from (5) and (6) that 

Here, 

The equations that define the integrals in 6W in the well-known classical theories (the 
theory of an ideal liquid, the theory of elasticity, etc.) are equations of state. Since 
the Lagrangian &is a four-dimensional scalar, the set of Pt.” is a set of components of 

a second-rank tensor. The expression for SWcjiven by (111 does not enable the expressions 
for the components of the tensors Pt.‘k, Tkij, Tksij to be uniquely defined. To define the 
components of Pt.‘” uniquely we need extra assumptions, about which variations of the par- 
ameters 3 are regarded as independent , and these assumptions are connected with the physical 
interpretation of the equationsofstate. The form of the tensor functions Tk”’ and Tksij 

likewise cannot be uniquely established, since the quantities ag*, 
independent on the surface 24.. 

and V&gi, are not 
It was shown in /6f that, from the expression for &W,there 

follow only expressions for certain definite combinations of components of the tensors T”j 
and Tk"" , resulting from the conditions for the variations agil and (D/Dn)(ag,,) = nkvkagij 
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on the surface X, to be independent. 
As a special case of the general model of 

and magnetized medium in which the dissipative 
Joule heat. Assuming that the parameter ~6"~ is 
potential of the electromagnetic field AX, ana 

a co'ntinuum we take the model of a polarized 
processes axe due solely to the liberation of 
the component of a faux-dimensional vector 
that the generalized forces MA are the com- 

ponents of the four-dimensional vector of the electric current IE, the functional 8u'* has 
the form 

6TV* :.= \ &,‘4,dY* 
+, 

and defines the possible liberation of Joule heat in the medium /7f, 
We put the Zagrangian Am equal to f7/ 

.%,=-u--e.+ & F,, H”” 

where U is the total energy density ofthemedium, L is a term which takes account of the 
interaction of the electromagnetic field with the medium, and F,* and Pn are the components 
of the electromagnetic field tensors. We shall henceforth assume that U depends on 3ji.gij* 
the entropy S,KABI and KC,while L depends on Fij and the covariant derivatives VBF~, as 
well as on the arguments listed. 

In the present ease, the expression for SWtakes the form 

where the tensor 

oan be interpreted as the total energy-rno~~~~rn tensor of the nedium f electromagnetic field 
System, and Sj.*' are the components of the Minkowski energy-momentum tensor of the electro- 
magnetic field. {In the expressions of the present example we quote only the terms which are 
obtained with variation of the arguments 5'1 and Ax of the function A,. The complete system 
of equations of mechanics and electrodynamics is similarly obtained in /7/j. 

When obtaining the System of Euler's equations and the expression for the functional 61?r, 
we have not used the condition that the material Lagrangian &be scalar, which enables a 
connection to be found between the components of the tensors Tij and #j. From the con- 
dition for h,to be Scalar under any infinitesimal coordinate transformation y" =zi + &14(sk) 
there follow the equations 

which Show that, when the set (31 of defining parameters include the arguments V&, where 

PA are the components of a vector or tensor of any rank, the components of the teneor 8" 
are asymmetric:, Obvious.ly, when V,@ are no% present in the set (3), we see from (14) that 
the tensors 0', and T” axe identical. 

Consfder some consequences of the system of Euler's Eqs.(?)-(9) and identities (14). 
From thegravitationerf, field Eqs.(7) in the light of Bianchi's identities we obtain the 
equations V 1 T"j F 0 (15) 

In view of (13), the equations of momenta (8) can be given the form 

or 

T'j,w6? can write Eqs.(ls) aS 

07) 
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It can be shown that Eqs.(16f and (17) are the same , i.e., in the context of the present 
model Eqs.(8) of the momenta of the material are a consequence of Eqs.(7). This property of 
the system of Euler's equations is destroyed if there are terms in 6@'* that describe external 
spatial interaction of the thermodynamic system with other such systems, but is retained 
regardless of the method of specifying the generalized interior surface and mass forces r2? 
andMA, correspondingtointernal mechanisms of transformation of one type of energy into 
another within the thermodynamic system, or of the type of parametrically specified tensors 
h'AB and KC. 

In the above examples of energy dissipation due to the viscous and electrically conduct- 
ing properties of the continuous medium and the transformation of non-thermal into thermal 
energy, the equations of material momenta are a consequence of the field equations, regardless 
of the chosen type of dependence of the components of the viscous stress tensor & and of the 
four-dimensional current vector Ik on the defining parameters (3). It must also be noted that, 
when account is taken of dissipative effects due to the electrical conduction of the medium, 
we have to include in the material Lagrangian the electromagnetic field Lagrangian, since 
otherwise the Joule heat liberation cannot be regarded as an internal process of one type 
of energy transformation into another within a single thermodynamic system. 

The above system of Euler's Bqs.(7)-(9) and the expression for the functional 6w show 
that, when constructing complicated models of continuous media in the general theory of 
relativity, the question arises of what to call the material energy-momentum tensor. The 
equationsofmomenta for the medium can be written in the form (15) with the aid of the tensor 
T"j, which is usually called the material energy-momentum tensor. Given anymaterialcontinuum, 
this tensor is symmetric regardless of the choice of model defining parameters. However, it 
can be seen from the variational equation that the conditions for strong discontinuities on 
the surface (and also the initial and boundary conditions) are stated for the components, 
given by (141, of the tensor P", which in general is not symmetric and differs from T" /8/. 
The difference is connected, first with the fact that the expression for the Lagrangian it, 
may include the divergence term V&F, which does not affect the form of Euler's Bqs.(7) or 
of the tensor T", but changes the form of Pij (the form of the vector &?', and its possible 
physical interpretation, are discussed in detail in /9/l, and second, with the presence in 
the set of arguments (3) of the covariant derivatives G,p4. Everything said above refers to 
models of continua with complicated physico-chemical properties. If the covariant derivatives 
of the tensor functions pA and the term V,$@, are not present in the arguments of the 
Lagrangian &,,the components of the tensor P’j are the same, apart from a factor, as the 
components of the Ricci tensor. 

When constructing models of a continuum in the context of the special theory of relativity, 
with the metric space postulated as a four-dimensional pseudo-Euclidean Minkowski space, the 
equations of the momenta for the material (16) can be written in the form t,%,,'k = 0, as well 
as in the form f,T,:" = 0, where the components of the asymmetric tensor W"' and of ,the 
symmetric tensor T'" are connected by Eqs.(l4), while the boundary conditions are stated for 
the components of the asymmetric tensor eii; =p@. 
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